

Introduction to kola
the “fastest” Python interface to kdb+

Jo Shinonome

Self Introduction

Author of

- vscode-q, vscode-k-pro, the vscode plugin for kdb+/q
- jkdb, a high performance and modern Javascript interface to kdb+/q
- geek, a golang interface to kdb+/q
- kola, a Python/Rust/R Polars interface to kdb+/q

Python interfaces to kdb+

- qPython/qPython3, Cython
- pyq, C, deprecated
- pykx, Cython + kdb+/q process wrapper
- kola, Rust

qPython/qPython3 - Cython(1%)

- only use Cython for uncompressing IPC message
https://github.com/finos/qPython/blob/main/qpython/fastutils.pyx

- deserializing IPC messages in Python, low-performance
- kola is 10-20 times faster than qPython/qPython3

pyq - C(43%)

- allow to run python code in kdb, and run q code in python
- for most cases, q objects cannot be used directly by Python packages
- such projects are too complicated to maintain

- python code in q cannot be linted and formatted
- q code in Python is not necessary, use qStudio or vscode-k-pro

pykx - Cython(9%), C(4%), q(4%)

- a kdb+/q process wrapper in Python
- store q objects in q process
- provide dataframe interface to q table

- need to convert to pandas/pyarrow for some Python ML packages, low performance
- requires Python developers to learn some q knowledge to use the interface

- expensive license
- set up requires several dependencies to be installed for Windows
- start up questions are quite annoying, keep asking for the license file
- Cython code base is difficult to maintain, no proper IDE for Cython

kola - Rust(84%)

- core parts (uncompression and deserialization) are in Rust (84% code)
- c level performance
- better memory management, 30%-50% less memory when querying data from kdb

https://github.com/jshinonome/kola/blob/main/py-kola/benchmark.md
- better deserialization performance using parallel computing

- support Python 3.12 without changing code
- a much bigger polars community to support dataframe interface

- most machine learning packages are going to support polars directly
- better performance for converting data to numpy/pandas

- no need to know kdb+/q knowledge for Python developers

Dataframe - pykx vs pandas vs polars

- all provide dataframe for Python
- pykx - kdb table backend
- pandas - numpy/pyarrow backend
- polars - pyarrow backend

- polars is between 10 and 100 times as fast as pandas for df operations
- polars has the same level of performance as or even faster than kdb+
- polars can be used for almost all pykx dataframe operations
- inequality join for polars, correspondent to pykx window join, is in progress
- pandas is the most supported dataframe for Python ML packages
- Python ML packages support for polars is a work in progress

Profiling - Num of Function Calls for Sync - kola

Profiling - Num of Function Calls for Sync - pykx

Query Performance Comparison
Case column num operation kola + polars mem(MB) pykx mem(MB) speed

1 14 query from kdb 301 ms ± 4.25 ms 348 381 ms ± 8.52 ms 632 1.27x

1 14 send to kdb 387 ms ± 8.75 ms 708 267 ms ± 11.5 ms 632 0.69x

1 14 cast to pd df 57.1 ms ± 1.85 ms 976 1.36 s ± 39.8 ms 894 23.82x

1 14 send pd df to kdb 506 ms ± 20.6 ms 1203 2.73 s ± 95.9 ms 1093 5.40x

2 64 query from kdb 973 ms ± 18.1 ms 1183 1.39 s ± 22.9 ms 2170 1.43x

2 64 send to kdb 1.21 s ± 42.9 ms 1337 726 ms ± 46.2 ms 2170 0.60x

2 64 cast to pd df 201 ms ± 6.23 ms 1523 1.31 s ± 9.31 ms 2203 6.52x

2 64 send pd df to kdb 1.48 s ± 66.5 ms 1896 3.1 s ± 102 ms 3379 2.09x

3 5 (3+5+5) query from kdb 397 ms ± 11.1 ms 484 466 ms ± 34.4 ms 694 1.17x

3 5 (3+5+5) cast to pd df 748 ms ± 23.9 ms 863 1.56 s ± 70.7 ms 1092 2.09x

Larger number in speed column kola+Polars is faster

Parallel Computing

Deserialization

00000000tablecol100000000000000col2000000000000col30000000000000

deserialize col1

deserialize col2

deserialize col3

merge into table

Parallel Deserialization

00000000tablecol100000000000000col2000000000000col30000000000000

deserialize col1

deserialize col2

deserialize col3

merge into table

Demo - Querying data within 20M rows * 64 columns

n: 2000000;

table: ([]sym: n?`3; time: .z.D + 1000 * "n"$til n; volume:
n?1000; cond: n # enlist "aaa");

columns: `$("ask"; "bid") cross string til 30;

table: ![table; (); 0b; columns!(count columns)#enlist
(?;n;1.0)];

New Features since 1.0.0

- IPC protocal ver 6, up to 1TB IPC message
- timeout, if the process is busy
- retries, if the process is not started yet
- a function to generate kdb+ ipc, just like -8! and -18!
- subscription, subscribe to a kdb feedhandler

Why kola?

- open source and free for latest Linux, macOS and Windows
- the most efficient/fastest way to

- query data from kdb+
- non-kdb data to kdb+

- extremely fast dataframe operations powered by polars
- very likely support Python 3.13 in Oct 2024, right after Python 3.13 is released
- can be extended to support R (Already works, never make a proper release)

Thank you!

try kola today

pip install kola
let me know if any issues

Questions?

